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Abstract. Let g : L → L be an atoroidal, endperiodic map on an infinite type
surface L with no boundary and finitely many ends, each of which is accumulated
by genus. By work of Landry, Minsky, and Taylor in [LMT23], g is isotopic to a
spun pseudo-Anosov map f . We show that spun pseudo-Anosov maps minimize
the number of periodic points of period n for sufficiently high n over all maps in
their homotopy class, strengthening Theorem 6.1 of [LMT23]. We also show that
the same theorem holds for atoroidal Handel–Miller maps when one only considers
periodic points that lie in the intersection of the stable and unstable laminations.
Furthermore, we show via example that spun-pseudo Anosov and Handel–Miller
maps do not always minimize the number of periodic points of low period.

1. Introduction

Let g : L→ L be an endperiodic map on an infinite type surface L with no boundary
and finitely many ends, each of which is accumulated by genus. In [LMT23], Landry,
Minsky, and Taylor define spun pseudo-Anosov maps on such surfaces L which by
definition preserve a pair of transverse singular foliations, making them a type of
generalization of pseudo-Anosov maps to the infinite type setting (see Definition 2.3).
They show that such a map g is isotopic to a spun pseudo-Anosov map f if and only
if g is atoroidal, i.e. it doesn’t fix an essential multicurve up to isotopy (Theorem A
of [LMT23]). Thus, spun pseudo-Anosov maps provide a type of normal form for and
offer a way of studying such endperiodic maps.

Spun pseudo-Anosov (spA) maps share certain dynamical features with pseudo-
Anosovs on finite type surfaces. Thurston showed that for every n, pseudo-Anosov
homeomorphisms minimize the number of periodic points of period n over all maps
in their homotopy class ([Thu88]). Theorem 6.1 of [LMT23] states that spA maps
minimize points of period n among all homotopic endperiodic maps for all n. Our
main theorem is that for large enough n, this holds for all maps homotopic to a spA
map, not just the endperiodic ones.

Theorem A. Let f : L→ L be a spun pseudo-Anosov map. For some N ∈ N, every
homeomorphism g homotopic to f has no fewer points of period n than f for all
n > N .

The constant N is the highest period of a periodic point lying on an escaping half
leaf (see Section 2.2 for definitions). The result is sharp in that one cannot in general
remove the constant N – there exist spun pseudo-Anosovs maps with fixed points
and a homotopic homeomorphism without fixed points, see Section 5 for an example.
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Defining the growth rate λ(g) of an endperiodic map g by

λ(g) = lim sup
n→∞

n
√

#Fix(gn),

we obtain the following corollary, generalizing Corollary 6.2 of [LMT23].

Corollary B. Let f : L→ L be spA. Then

λ(f) = inf
g≃f

λ(g),

where the infimum is taken over all maps g homotopic to f .

Such a map g is also isotopic to a Handel–Miller representative originally by work
of Handel and Miller and later written up and further studied by Cantwell, Conlon,
and Fenley (see Theorem 4.54 of [CCF21]). These are maps that preserve a pair
of laminations Λ+

HM and Λ−
HM , called the Handel–Miller laminations. We let K =

Λ+
HM ∩ Λ−

HM , and call h : K → K the core dynamical system of h after Cantwell,
Conlon, and Fenley. We also obtain a version of Theorem A for atoroidal Handel–
Miller maps.

Theorem C. Let h : L → L be an atoroidal Handel–Miller map with stable and
unstable Handel–Miller laminations Λ+

HM and Λ−
HM . For some N ∈ N, every g ≃ h

has no fewer points of period n than the core dynamical system of h for all n > N .

Note that the fact that we only obtain a statement on the number of periodic
points for the core dynamical system of h is unsurprising, as Handel–Miller maps
are only uniquely defined on K. Handel–Miller maps and spun pseudo-Anosov maps
are closely related (see Section 8 of [LMT23]). As with Theorem A, the constant N
cannot in general be removed from the theorem statement.

The proof of Theorem 6.1 in [LMT23] (Theorem 2.2 in this paper) goes as follows.
Given an endperiodic map g homotopic to a spA map f , the authors find an injective
map from periodic points of period n of g to Nielsen equivalent points of f of the
same period. They do this via showing that points on ∂∞ H2 fixed by a lift g̃ of g

are sources or sinks for the entire action of g̃ on H2; this is where the endperiodic
assumption on g comes in. They then conclude via the Lefschetz-Hopf theorem that
g̃ must have a fixed point in H2, proving Theorem 2.2 below. We will use a similar
argument here, but the argument in [LMT23] that a fixed point of g̃ on ∂∞ H2 is a

sink or source for the action on H2 does not go through. Instead, in Lemma 3.4 we
show that g̃ is homotopic through maps with no new fixed points to a map that has
sink or source dynamics in a neighborhood of a fixed point z ∈ ∂∞ H2 of g̃. We do this
by taking inspiration from work of Handel and Thurston (see Lemma 3.1 of [HT85]
in particular), though we must modify their arguments to the setting of an infinite
type surface.

1.1. Acknowledgments. I would like to thank Sam Taylor for many helpful conver-
sations about this problem. I would also like to thank Dan Margalit and the referee
for feedback on earlier drafts of this paper.
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2. Background

2.1. Endperiodic homeomorphisms. Throughout, let L be an infinite type sur-
face with no boundary and finitely many ends, each of which is accumulated by genus.
We can put a hyperbolic metric on such a surface and identify the universal cover of L
with H2. We may further assume that this metric is standard, i.e. doesn’t contain any
embedded hyperbolic half planes. Let π : H2 → L be a covering map, and identify
the group of deck transformations with π1(L). Any homeomorphism h : L → L can

be lifted to H2 and extended to H2 = H2 ∪∂∞ H2 by work of Cantwell and Conlon
(see Theorem 2 of [CC15]). If f, g : L→ L are homotopic maps with compatible lifts

f̃ , g̃ : H2 → H2 (i.e. the lifts come from lifting a homotopy), then f̃ and g̃ agree on
∂∞ H2 (see Corollary 5 of [CC15]).

In proving Lemma 3.3, we will need the following lemma.

Lemma 2.1. Let g : L → L be atoroidal, and let g̃ : H2 → H2 be a lift of g. Then g̃
commutes with no nontrivial elements of π1(L).

Proof. Suppose g̃ commuted with some nontrivial γ ∈ π1(L). As L has no cusps,

every element in π1(L) acts of H2 with an axis of translation, so γ has some axis
of translation Aγ. Then γg̃Aγ = g̃γAγ = g̃Aγ, so γ fixes the geodesic g̃Aγ. Since
nontrivial isometries of H2 can fix at most one geodesic, we must have g̃Aγ = Aγ. But
then g fixes the closed geodesic π(Aγ), contradicting the fact that g is atoroidal. □

Let g : L→ L be a homeomorphism, and let E be an end of L. The end E is called
attracting under g if for some neighborhood UE of E , positive iterates of some power of
g applied to UE escape the end E , i.e. for some n, gn(UE) ⊆ UE and

⋂
i≥1 g

ni(UE) = ∅.

An end is called repelling if it is attracting under g−1. The map g is called endperiodic
if every end of L is either attracting or repelling under g. Fix such a neighborhood
UE of each end E such that the UE are pairwise disjoint. Let U+ be the union of UE
over all attracting ends, and U− the union of UE over all repelling ends. Define the
positive and negative escaping sets of g by

U+ =
⋃
n≥0

g−n(U+)

and

U− =
⋃
n≥0

gn(U−)

respectively.
A g-juncture of an end E is a compact 1-manifold that bounds such a neighborhood

UE of E as above. A g-juncture is positive (resp. negative) if the corresponding end
is positive (resp. negative). A tightened g-juncture is the geodesic representative of
a g-juncture. For our purposes, we may pick each g-juncture to be a single closed
geodesic; fix such a choice.

Given an endperiodic map g : L → L, we can form the mapping torus Ng = L ×
I/(x, 1) ∼ (g(x), 0), a non-compact 3-manifold. Following Fenley, we can then create



4 ELLIS BUCKMINSTER

the compactified mapping torus Ng = Ng ∪ ∂+Ng ∪ ∂−Ng as follows. Add an ideal
point to each flow line in U+ × I/ ∼ ⊆ Ng; call this set of ideal points ∂+Ng. Define
∂−Ng similarly. This defines a depth 1 foliation on Ng, where the depth 1 leaves are
all homeomorphic to L, make up the set Ng \ {∂+Ng ∪ ∂−Ng}, and spiral around the
depth 0 leaves, which are compact and make up the set ∂+Ng ∪ ∂−Ng. For more
details on this construction, see [Fen97].

Another way to view this construction, following the exposition of Field, Kim,
Leininger, and Loving in [FKLL23], is as follows. As Ng is a fiber bundle over the
circle with fiber L, we have a covering map p : L × (−∞,∞) → Nf coming from

unwinding the circle base. Define Ñg = L × (−∞,∞) ∪ U+ × {∞} ∪ U− × {−∞}.
The map G : Ñg → Ñg defined by G(x, t) = (g(x), t − 1), where ±∞ − 1 = ±∞,

is a homeomorphism, and the cyclic group ⟨G⟩ acts on Ñg properly discontinuously

and cocompactly. Thus, the quotient Ng = Ñg/⟨G⟩ is a compact manifold, with
Ng = L× (−∞,∞)/⟨G⟩. Its boundary is ∂+Ng ∪ ∂−Ng, where ∂+Ng = U+/⟨G⟩ and
∂−Ng = U−/⟨G⟩.

2.2. Spun pseudo-Anosov maps. Before defining spun pseudo-Anosov maps, we
record the main property of these maps proven in [LMT23] that we will strengthen.

Theorem 2.2. (Theorem 6.1 of [LMT23]). If f : L→ L is spA, then for each n ≥ 1,
the homeomorphism f has the minimum number of periodic points of period n among
all homotopic, endperiodic homeomorphisms.

In [LMT23], a spun pseudo-Anosov map f : L→ L is defined as follows.

Definition 2.3. (Definition 3.1 of [LMT23]). An endperiodic map f : L→ L is spun
pseudo-Anosov (or spA) if there exists a depth one foliation F of a hyperbolic 3-
manifoldM and a transverse, circular almost pseudo-Anosov flow φ that is minimally
blown up with respect to F such that L is a leaf of F and f is a power of the first
return map induced by φ.

The pseudo-Anosov flow φ being circular means it is the suspension flow of a
pseudo-Anosov homeomorphism, i.e. for a pseudo-Anosov homeomorphism h : S → S
on a surface S, φ is the image of the vertical flow ψ on S× I under the quotient map
S×I/(x, 1) ∼ (h(x), 0). A depth one foliation is a foliation such that the complement
of the compact leaves is a circle bundle.

The definitions of almost pseudo-Anosov flows and being minimally blown up with
respect to the foliation F involve the concept of dynamic blowups, defined by Mosher
in [Mos90]. The interested reader can find a discussion of dynamic blowups in this
context in Section 3 of [LMT24]. They are irrelevant to our purposes, as Theorem
4.2 of [LMT23] states every spA map is isotopic to an spA+ map, as defined below.

Definition 2.4. (Definition 3.4 of [LMT23]). An endperiodic map f : L→ L is spA+

if there exists a circular pseudo-Anosov flow φ on a hyperbolic 3-manifold M and a
depth one foliation F transverse to φ such that L is a depth one leaf of F and f is a
power of the first return map induced by φ.
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Thus, given a spA map f : L → L, it is isotopic to a spA+ map f+. Both f and
f+ minimize points of period n for all n over all endperiodic homotopic maps by
Theorem 6.1 of [LMT23], so for all n, f and f+ have the same number of points of
period n. Therefore, for our purposes we may as well replace f with f+ and assume
f is spA+ from here on, although this will not affect any of the arguments. The only
reason to do this is to show that we don’t need to worry about dynamic blowups for
the purposes of this paper.

2.2.1. Periodic points and leaves. A spA map f : L → L comes with a collection of
data. This includes the 3-manifold M , the depth one foliation F , and the pseudo-
Anosov suspension flow φ as in Definition 2.4. Let F0 and F1 be the sets of depth
0 and depth 1 leaves of F respectively. We also have N , the compactified mapping
torus of f , which we can identify with the connected component of M\\F0 containing
L, where M \\F0 is M cut along F0 (see Section 1.3.1 of [FM11] for a definition). As
φ is a pseudo-Anosov flow on M , we have the invariant stable and unstable foliations,
denoted W s and W u. We can define foliations on L and N by Wu/s = W u/s ∩L and

W
u/s
N = W u/s ∩N .
Let ℓ be a half leaf of Wu/s based at a point p ∈ L. We say ℓ is periodic if p is

a periodic point of f . Given an end E of L, we say ℓ escapes the end E or ℓ is an
escaping half leaf if for all neighborhoods UE of E , all but a compact portion of ℓ is
contained in UE . Otherwise, we say ℓ is recurrent. Note that ℓ is recurrent if and
only if it intersects some compact set K ⊆ L infinitely often, and that this compact
set may be taken to be a closed geodesic α. By Proposition 4.6 of [LMT23] (see also
Theorem C of [Fen09]), the standard hyperbolic metric on L can be chosen such that

half leaves of W̃u/s are uniformly quasi-geodesic, so a lift ℓ̃ of ℓ to L̃ has a well-defined
endpoint on ∂∞ H2.

Let p ∈ L be a fixed point of f : L → L, and let f̃ : L̃ → L̃ be a lift fixing p̃, a lift

of p. Then we can relate the dynamics of f̃ on ∂∞ H2 with the endpoints of lifts of

half leaves of Wu/s based at p. Say a lift g̃ : L̃→ L̃ of an endperiodic map g : L→ L
has multi sink-source dynamics if g̃ |∂∞ H2 has at least four fixed points, and the fixed
points alternate between attracting and repelling with regard to the action of g̃ on

∂∞ H2. Then by Theorem 4.1 of [LMT23], for f : L → L spA with lift f̃ : L̃ → L̃

with fixed point p̃ a lift of p ∈ L, there exists some k ≥ 1 such that f̃k acts on ∂∞ H2

with multi sink-source dynamics. Furthermore, the fixed points of f̃k on ∂∞ H2 are

exactly the endpoints of lifts of half leaves of Wu/s based at p̃. Thus, if f̃ acts on
∂∞ H2 with multi sink-source dynamics, we can call a fixed point z ∈ ∂∞ H2 escaping
or recurrent based on the behavior of the corresponding half leaf.

2.3. The Lefschetz-Hopf theorem. Our proof of Theorem A relies on the Lefschetz-
Hopf theorem; we recall the necessary background here (see [Bro71] for more details).
Given a map h : Sn → Sn from the n-sphere to itself, we have an induced homo-
morphism h∗ : Hn(S

n) → Hn(S
n). Since Hn(S

n) ∼= Z, the map h∗ is of the form
h∗(x) = kx for some k ∈ Z. We define the degree of h by deg(h) = k.
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Now suppose j : Rn → Rn is a map with an isolated fixed point x0 ∈ Rn. Let B
be a closed ball centered at x0 and containing no other fixed points of j, and define a

map h(x) = x−j(x)
||x−j(x)|| from ∂B to the unit sphere. We define the fixed point index of

j at x0 by I(j, x0) = deg(h). Note that if we have a homotopy H : Rn×I → Rn such
that H0 = j, H1 = j′, Ht(x0) = x0, and x0 is the only fixed point of Ht in B for all
t, then I(Ht, x0) is well-defined and continuous in t, and therefore must be constant,
so I(j, x0) = I(j′, x0).
We can extend the definition of the index of a fixed point to a map j : M →M on

a manifold without boundary by restricting our attention to a chart. If ∂M ̸= ∅ and
x0 ∈ ∂M is a fixed point of j, we define I(j, x0) =

1
2
I(Dj, x0), where Dj : DM → DM

is the double map, defined to be j on each copy of M in DM =M ∪id∂M M .
The Lefschetz-Hopf theorem states that for j : X → X a map on a triangulable

space X with finitely many fixed points, we have∑
x0∈Fix(j)

I(j, x0) = Λj,

where Λj is the Lefschetz number of j, defined by

Λj =
∑
i≥0

(−1)itr(j∗ : Hi(X,Q) → Hi(X,Q)).

We will be concerned with that case that j is an orientation-preserving homeomor-
phism of the closed disk, in which case Λj = 1.

3. The proof of Theorem A

Let f : L → L be spA, and let g : L → L be homotopic to f via a homotopy

H : L × I → L with H0 = f and H1 = g. Let f̃ : H2 → H2 be a lift of f , and let

H̃ be a lift of H with H̃0 = f̃ . Then g̃ = H̃1 is a lift of g with f̃ |∂∞ H2= g̃ |∂∞ H2 .
Suppose p ∈ L is fixed by fn and q ∈ L is fixed by gn for some n. We say p and q

are Nielsen equivalent if there exist lifts p̃ and q̃ of p and q to H2 such that f̃n(p̃) = p̃
and g̃n(q̃) = q̃.
To prove our main theorem, we’d like to show that for every point of period n of

f , there is a Nielsen equivalent point of period n of g, thus getting an injective map
from points of period n of f to points of period n of g. To do this, we could use the

fact that for compatible lifts f̃ , g̃ : H2 → H2 of f and g, the lifts agree on ∂∞ H2 and
(up to passing to a power) act on ∂∞ H2 with multi sink-source dynamics. If we can
show that each fixed point of g̃n on ∂∞ H2 has index 1

2
, then g̃n will have to have a

fixed point of negative index in H2. However, to show that a fixed point z ∈ ∂∞ H2 of
g̃n has index 1

2
, we’ll need some control over the dynamics of g̃n in H2 near z. To get

this control, we’ll focus on recurrent fixed points z ∈ ∂∞ H2. The following lemma
shows that restricting our attention in this way won’t affect the limit in the main
theorem, as we are only ignoring finitely many half leaves.

Lemma 3.1. Only finitely many periodic half leaves of f escape an end.



PERIODIC POINTS OF ENDPERIODIC MAPS 7

Proof. Let p ∈ L be a periodic point of f , and let ℓ be a half leaf at p that escapes
an end. Suppose that ℓ is a leaf of the unstable foliation; the case that ℓ is a leaf of
the stable foliation is similar. Since p is periodic, it is contained in a closed orbit γ
of the flow φ. Let H0 be the periodic leaf of W u containing γ. Cut H0 along ∂+N
and the periodic orbits of φ. Then based on the description of these pieces given in
Lemma 4.4 of [LMT23], exactly one of these components contains γ; call this one C.
Since γ is one of the boundary components of C, we know C is of type (1) or type
(2), as in Figure 1 (reproduced from Figure 7 of [LMT23]); we will show it must be
of type (1).

Figure 1. The options for C in Lemma 3.1. Type (1) is on the left,
and type (2) is on the right. In blue are flow lines of φ, and in red is ℓ.

Let U be a collar neighborhood of ∂+N in N . Intersecting with C gives us a collar
neighborhood U ∩C of ∂+N ∩C in C. Considering the way ℓ sits inside C, we see by
Lemma 4.5 of [LMT23] that either C has a single boundary component from ∂+N ,
which is a closed curve, and ℓ is eventually contained inside any neighborhood of this
boundary component, or C has some number of noncompact boundary components
from ∂+N , and ℓ = C ∩ L accumulates on all of them.

Let D be the component of ∂+N corresponding to the end out which ℓ escapes.
Then for any neighborhood U ′ of D in N , ℓ is entirely contained within U ′ past some
point. Thus ℓ is eventually contained in U ∩ C. This implies that C is of type (1) in
Lemma 4.5 of [LMT23], i.e. C ∩ ∂+N is a single closed curve.
The above argument gives us a map from leaves of f starting at periodic points

and escaping an end to closed leaves of the foliation W u ∩ ∂+N . We claim that this
map has finite image and is injective.

To see that the image is finite, note that, W u ∩ ∂+N has finitely many pairwise
nonhomotopic closed leaves. Also note that two homotopic closed leaves cannot be
in the image of this function, as the two corresponding periodic orbits would then
be homotopic, and no two distinct closed orbits of a pseudo-Anosov suspension flow
are homotopic. This follows from the fact that periodic points of pseudo-Anosovs are
unique in their Nielsen classes, see Lemma 3.1 of [HT85].

To see injectivity, suppose leaves ℓ and ℓ′ from periodic points p and p′ in leaves
H0 and H ′

0 were sent to the same closed curve α in ∂+N . Then since leaves of
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W u are disjoint, H0 = H ′
0, and again we’d have two homotopic closed orbits, a

contradiction. □

3.1. Recurrent fixed points. Now we’ll focus our attention on recurrent fixed

points of f . Let f̃ : L̃ → L̃ be a lift of f , and z ∈ ∂∞ H2 be a recurrent fixed

point of f̃ with associated periodic half leaf ℓ ⊆ Wu/s and lift ℓ̃ of ℓ. Let α ⊆ L
be a closed geodesic that intersects ℓ infinitely often. Each intersection of ℓ with α

defines a lift of α intersecting ℓ̃; label these lifts {α̃i}i∈N, ordered from the perspective
of moving along ℓ. The following lemma is a modification of Lemma 1.1 from [HT85]
and gives us a neighborhood basis for z using {α̃i}i∈N.

Lemma 3.2. Suppose z ∈ ∂∞ H2 is recurrent. Let ℓ, α, and {α̃i}i∈N be as above. Let

Ni be the component of H2 \ α̃i containing z. Then {Ni}i∈N forms a neighborhood
basis for z.

Proof. There is a uniform positive lower bound to the distance between two consec-
utive lifts α̃i and α̃i+1 since they are lifts of the same closed geodesic α, implying

H2 ∩
⋂

iNi = ∅. Since ℓ̃ ∩ α̃i → z as i→ ∞, we must have
⋂

iNi = z. □

Our next two lemmas are inspired by parts of the proof of Lemma 3.1 in [HT85].
In their setting they are studying compact surfaces; we need to be careful to do
everything in a lift of a compact subsurface to generalize these techniques to our
setting.

The goal of the following lemma is roughly to show that close enough to z ∈ ∂∞ H2,

f̃ moves points far. In Lemma 3.4, we will find a homotopy H : H2 × I → H2 taking
g̃ to a new map g′. To show that g′ has the same index as g̃ at z, we need to show
that in a neighborhood of z, each Ht has no fixed points other than z. We do this
by showing via Lemma 3.3 that Ht first moves points far, and then moves them back
only a little, so it can’t create any new fixed points.

Lemma 3.3. Given any K > 0 and compact subsurface S ⊆ L, there exists an i such
that for all p ∈ Ni ∩ π−1(S), d(p, f(p)) > K.

Proof. Suppose towards contradiction that we have a sequence of points pi ∈ π−1(S)
such that pi → z and d(pi, f(pi)) ≤ K for some K > 0. Since S is compact, each pi
is a uniformly bounded distance away from a lift of a single point q0 ∈ S, so we may
assume up to changing the constants that each pi is a different lift of q0. Thus, there
are γi ∈ π1(L) such that pi = γi(p1). Then

K ≥ d(pi, f(pi))

= d(γi(p1), fγi(p1))

= d(p1, γ
−1
i fγi(p1)).

Since the set of images of p1 under all lifts of f is discrete (they are all lifts of the
point f(q0)), we must have γ−1

i fγi = γ−1
j fγj for some i ̸= j. Then γjγ

−1
i f = fγjγ

−1
i ,

which contradicts the fact that f commutes with no nontrivial deck transformations
by Lemma 2.1. Thus, z has an open neighborhood N such that every point in
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N ∩ π−1(S) is moved at least K by f . By Lemma 3.2, we can take N to be Ni for
some i. □

Lemma 3.4. Let p be a point of period n of f with no escaping half leaves, let f̃ be a
lift of f to H2 and p̃ a compatible lift of p. Suppose g ≃ f , and let g̃ be a compatible

lift of g. If g̃ has finitely many fixed points, f̃ acts on ∂∞ H2 with multi sink-source

dynamics, and z ∈ ∂∞ H2 is fixed by f̃ , then I(g̃, z) = 1
2
.

Proof. Since f̃ acts on ∂∞ H2 with multi sink-source dynamics, z is isolated as a fixed

point of f̃ and is either a sink or a source; suppose it is a sink. We know f̃ and g̃
agree on ∂∞ H2, so z is a sink for g̃ as well. Note that this is with respect to the

action of g̃ on ∂∞ H2, not H2. Our strategy is to find a neighborhood U2 of z and a
map g′ : L → L homotopic to g̃ through maps with no fixed points other than z in
U2 such that g′(U2) ⊊ U2.
Let γ be a geodesic ray in H2 going to z, and let α be a closed geodesic in L that γ

crosses infinitely many times. Let H : I × L→ L be a homotopy such that H0 = idL
and H1(g(α)) = g∗(α), the geodesic representative of g(α). This homotopy can be
taken to be supported on some compact subsurface S ⊆ L. Since H is compactly
supported, no point on L is moved more than some constant C during the homotopy,
i.e. the path traced out by any point during the homotopy has length less than C.
Since g̃ has finitely many fixed points, we can find a neighborhood Ni as in Lemma

3.2 such that Ni \ z contains no fixed points of g̃ and such that g̃ moves points in
∂∞ H2 ∩Ni towards z. Let U1 = Ni. Now pick Nj with j > i such that g̃(Nj) ⊆ U1,
and all points in Nj ∩ π−1(S) are moved more than 3C by g̃, which is possible by
Lemma 3.3. Let U2 = Nj. Relabel the set {α̃i}i so α̃1 and α̃2 border U1 and U2

respectively. See Figure 2.

Figure 2. The setup in Lemma 3.4.

Let S̃ be the connected component of π−1(S) containing α̃2, and define a homotopy

H̃ : I ×H2 → H2 as follows. On H2 \ S̃, let H̃(t, x) = x. On S̃, let H̃ be the unique
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lift H ′ of H |I×S such that H ′
0 = idS̃. Since H ′

0 |∂S̃= id∂S̃, and H
′
t is a lift of id∂S

on each component of ∂S̃, we must have that H ′
t |∂S̃= id∂S̃, as distinct components of

∂S̃ are positive distance apart, and lifts of id∂S on a single component of ∂S̃ differ by

hyperbolic isometries of positive translation length. Thus, we have that H̃ is a well

defined homotopy on all of H2.

Since π ◦ H̃1 ◦ g̃(α̃2) = g∗(α) and H̃1 ◦ g̃(α̃2) ⊂ S̃, we must have H̃1 ◦ g̃(α̃2) = g̃∗(α̃2),

the geodesic representative of g̃(α̃2). Let g
′ = H̃1 ◦ g̃. Since g̃ moves points in N2 ∩ S̃

at least 3C, and H̃t moves points in S̃ no more than C for all t ∈ [0, 1], H̃t ◦ g̃ has no

fixed points in N2 ∩ S̃ for all t. Since g̃ has no fixed points in N2 \ z and H̃t acts by

the identity on N2 \ S̃, we have that H̃t ◦ g̃ has no fixed points on all of N2 \ z, but
does fix z. Thus, I(g̃, z) = I(g′, z).

To compute I(g′, z), note that the endpoints of g̃∗(α̃2) are in ∂∞ H2 ∩U2, so g
′(N2) ⊊

N2, and z is a sink for the action of g′ on all of H2. Thus, I(g′, z) = 1
2
. □

Theorem 3.5. Let f : L → L be spA. For some N ∈ N, every g ≃ f has no fewer
points of period n than f for all n > N .

Proof. By Lemma 3.1, only finitely many periodic points of f have half leaves that
escape an end. Let N be the highest period of such a point. Now let p be any periodic
point of f of period n > N . Our strategy is to find a Nielsen equivalent point q that
has period n under g. Since distinct points of period n of f aren’t Nielsen equivalent
by Lemma 4.8 of [LMT23], this will define an injective map from points of period n
of f to points of period n of g.

So, let f̃ be a lift of f , let p̃ be a compatible lift of p, and g̃ a compatible lift of g,

so that f̃ and g̃ agree on ∂∞ H2. By Theorem 4.1 of [LMT23], we know that for some

smallest k, f̃k acts on ∂∞ H2 with multi sink-source dynamics. In the case that k ≥ 2,
the argument in the proof of Theorem 6.1 from [LMT23] carries over. In particular,

f̃ and g̃ have no fixed points on ∂∞ H2, so by the Lefschetz-Hopf theorem applied to

the disk H2, g̃ must have a fixed point in H2.
Now assume k = 1. By Lemma 3.4, all the fixed points of g̃ on ∂∞ H2 have index

1
2
. Since χ(S2) = 2, the double of g̃ must have a fixed point of negative index, so

g̃ has some fixed point q̃ in H2. All that remains is to show q̃ has period exactly n
under g̃. This same situation occurs in the corresponding proof for pseudo-Anosovs
in the finite-type setting, and the same argument used there as in Theorem 14.20 of
[FM11] works here. □

This immediately gives us the following corollary, where λ(f) is the growth rate of
f , defined in the introduction.

Corollary 3.6. Let f : L→ L be spA. Then

λ(f) = inf
g≃f

λ(g),

where the infimum is taken over all maps g homotopic to f .
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4. The Handel–Miller case

4.1. Handel–Miller theory. Let g : L → L be an atoroidal endperiodic map with
positive and negative escaping sets U+ and U−. A g-cycle of ends is a set

{E , g(E), g2(E), . . .}

for E an end of L. Each g-cycle of ends is finite, and there are finitely many of them.
Let A1, . . . , Ak be the set of g-cycles of ends, and pick a representative end Ei in each
Ai. Fix a single-component tightened g-juncture for each Ei as in Section 2.1. Let
J be the set of geodesic tightenings of the g-orbits of these g-junctures. Let J+ be
the set of positive g-junctures in J and J− the set of negative g-junctures in J .
We say a component γ of J escapes if the geodesic tightenings of the g-orbit of γ
escape compact sets. Let X± be the set of nonescaping components of J±. Then we
define the positive and negative Handel–Miller laminations by Λ+

HM = X− \ X− and
Λ−

HM = X+ \ X+. For more details on this construction, see Section 4.3 of [CCF21].
A positive principal region is a connected component of P+ = L\U−, and a negative

principal region is a connected component of P− = L \ U+. By work of Cantwell,
Conlon, and Fenley, there are finitely many principal regions, and each is the interior
of a finite sided ideal polygon (Theorem 6.5 of [CCF21]). A Handel–Miller map is a
homeomorphism h : L → L such that h is isotopic to g and h preserves Λ+

HM , Λ−
HM ,

and a choice of tightened g-junctures for each end of L. Given a Handel–Miller map
h, we have Λ+

HM = ∂U− and Λ−
HM = ∂U+. Every atoroidal endperiodic g : L→ L has

a Handel–Miller representative by Theorem 4.54 of [CCF21].
Fixing such a Handel–Miller map h, call a half leaf ℓ of Λ±

HM based at a point q
periodic if q is a periodic point of h. We say ℓ escapes an end E of L if ℓ ∪ (L \ UE)
is compact for every neighborhood UE of E . Otherwise, we say ℓ is recurrent. If ℓ is
recurrent, it intersects some closed geodesic α ⊂ L infinitely often. All but finitely
many periodic half leaves are recurrent (see Theorem 6.27 of [CCF21]). If a point
z ∈ ∂∞ H2 is an endpoint of a lift ℓ of a half leaf ℓ ⊂ Λ±

HM , we say z is recurrent
whenever ℓ is.

We will need the following proposition from [LMT23].

Proposition 4.1. (Proposition 8.2 of [LMT23]) Let h̃ : L̃ → L̃ be a lift of h such

that h̃k fixes a point q̃ ∈ L̃ for some k. Then either q̃ is in the closure of a lift of a

principal region, or q̃ is the unique fixed point of h̃k in L̃, and q̃ = ℓ̃+ ∩ ℓ̃− for ℓ̃± the

unique leaves of Λ̃±
HM through q̃. In the latter case, for some p, ∂ℓ± are exactly the

fixed points of h̃kp on ∂∞ H2.

In the second case, h̃kp acts on ∂∞ H2 with multi sink-source dynamics by Lemma
4.9 of [LMT23].

4.2. The proof of Theorem C. Throughout, let h : L→ L be an atoroidal Handel–
Miller map. To prove Theorem C, we need to modify Lemmas 3.2, 3.3, and 3.4 to
apply in this setting. Lemma 3.2 holds without modification in the proof for points
z ∈ ∂∞ H2 that are recurrent with respect to the Handel–Miller laminations. Lemma
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3.3 holds when we replace the spA map f with the atoroidal Handel–Miller map h.
For Lemma 3.4, we need to add one hypothesis.

Lemma 4.2. Let q be a point of period n of h with no escaping half leaves, let h̃ be a
lift of h to H2 and q̃ a compatible lift of q. Assume further that q̃ is the unique fixed

point of h̃n in H2. Suppose g ≃ h, and let g̃ be a compatible lift of g. If g̃ has finitely

many fixed points, and z ∈ ∂∞ H2 is fixed by h̃, then I(g̃, z) = 1
2
.

Proof. We have that h̃ acts on ∂∞ H2 with multi sink-source dynamics by Proposition
4.1. The rest of the proof follows exactly as in the proof of Lemma 3.4. □

Theorem 4.3. Let h : L → L be an atoroidal Handel–Miller map with stable and
unstable Handel–Miller laminations Λ+

HM and Λ−
HM . For some N ∈ N, every g ≃ h

has no fewer points of period n than the core dynamical system of h for all n > N .

Figure 3. The red region is the closure of a lift of a positive principal
region, and the blue region is the closure of a lift of a negative principal
region. The point q must lie on one of the vertices, shown in black, of
the polygonal intersection of these two regions.

Proof. Our main claim is that there exists some N ∈ N such that if q ∈ Λ+
HM ∩ Λ−

HM

is a periodic point of h of period n > N contained in leaves ℓ± ⊂ Λ±
HM , then for some

lift q̃ of q fixed by h̃n, where h̃ is a lift of h, we have that q̃ is the unique fixed point

in L̃ of h̃n, and at least one of ℓ+and ℓ− is recurrent. If q̃ is not the unique fixed point

of h̃n, then q̃ lies in the closure of a lift of a principal region by Proposition 4.1, and
must be as in Figure 3. As there are only finitely many principal regions of h, each
with only finitely many boundary leaves, there can only be finitely many such points
q. Similarly, all but finitely many periodic half leaves are recurrent. Thus, we can
let N be the maximum period among periodic points that lie on the intersection of
boundary leaves of principal regions and each of whose leaves are escaping.
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The rest of the proof follows exactly the same as the proof of Theorem 3.5, using our
modified versions of Lemmas 3.2, 3.3, and 3.4. In using the argument from Theorem
14.20 of [FM11] to show that the fixed point of g̃n has period exactly n, we use the

hypothesis that h̃n has a unique fixed point. □

5. Sharpness of results

One might hope for versions of Theorems 3.5 and 4.3 that hold for all periods and
do not require the constant N . This is what we see in the case of pseudo-Anosovs on
finite-type surfaces, but in fact it does not hold in our setting. We will demonstrate
this by producing a homeomorphism j without fixed points, homotopic to an endpe-
riodic map, but whose spA and Handel–Miller representatives each have at least one
fixed point. In particular, we will first construct an endperiodic homeomorphism g
whose spA and Handel–Miller representatives must have fixed points. We will then
modify g by an isotopy to get the map j, which is fixed point free.

5.1. Constructing the endperiodic map g. Let C be the portion of R2 bounded
by the hyperbolas xy = 1 and xy = −1 and containing the origin. Consider the map

A =

(
2 0
0 1

2

)
,

which maps C to itself.

Figure 4. On the left is the surface S. On the right is a system of
g-junctures on L. The arcs are drawn on S and should be doubled
to get closed curves on L. Positive g-junctures are drawn in red, and
negative g-junctures are drawn in blue.

Attach constant-width infinite strips to each of the four sides of C, and extend the
action of A across the strips so that they move following the boundary of C, and call
the extended map A′. Choose a nonempty A′-invariant set of disks in each of the four
strips, and attach handles to these disks to create a new surface S, as illustrated in
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Figure 4. Now we can define a map Â : S → S that acts as A′ off the handles and
just moves the handles with the rest of the surface.

Note that the doubled surface DS is a boundaryless infinite-type surface with four
ends, each of which is accumulated by genus. Let L = DS, and let g = DÂ, the
doubled map. Then since g : L → L is endperiodic, it has some spA representative
and some Handel–Miller representative.

5.2. The spA and Handel–Miller representatives of g have fixed points.
Now we will show that any spA or Handel–Miller representative of g has at least
one fixed point. Consider the system of g-junctures shown in Figure 4. Iterating
these under positive and negative powers of g shows that the positive Handel–Miller
lamination Λ+

HM is the union of the two copies of the x-axis, and Λ−
HM is the union

of the two copies of the y-axis. Since each lamination contains two leaves, label them
so that Λ+

HM = {λ+1 , λ+2 }, Λ−
HM = {λ−1 , λ−2 }, and λ+i ∩ λ−i ̸= ∅ for i = 1, 2. Let h be a

Handel–Miller representative of g. Then h must fix the two points 01 = λ+1 ∩ λ−1 and
02 = λ+2 ∩ λ−2 .
Let h̃ be a lift of h to L̃ ∼= H2 fixing lifts λ̃+1 and λ̃−1 of λ+1 and λ−1 . By Proposition

6.9 of [CCF21], h̃ acts on ∂∞ H2 with multi sink-source dynamics, where the fixed

points are exactly the endpoints of λ̃+1 and λ̃−1 . Let f be a spA representative of g,

and let f̃ be the lift of f to H2 such that f̃ agrees with h̃ on ∂∞ H2. Then since f̃
acts on ∂∞ H2 with multi sink-source dynamics, we have by Theorem 4.1 of [LMT23]

that f̃ has a fixed point in H2, and thus f has at least one fixed point in L.

5.3. Constructing the fixed point free map j. Now we will modify g by an
isotopy to create a map j : L→ L with no fixed points. For simplicity, we will define
the map only on S, and it should be doubled to get the map j : L→ L.

Let R be the subregion of C shown in Figure 5. Let F be the singular foliation
of C by hyperbolas of the form xy = a for a ∈ [−1, 1], which is invariant under the
action of A. As in Figure 5, foliate R by arcs such that each arc meets each leaf of F
at most once (except on the x-axis, where the two foliations coincide). Parametrize
R as R×[−1, 1] such that each leaf is R×{t} for some t ∈ [−1, 1], and a point x0 on
the x-axis corresponds with (x0, 0) ∈ R×[−1, 1]. For t ∈ [−1, 1], define Ft : R → R
by

Ft(x) = (1− |t|)(x/2 + 1) + |t|x.
Define F : R → R by

F (x, t) = (Ft(x), t).

Now define the map j first on R by

j(p) = F ◦ g(p),
and extend this map to the rest of S by

j(p) = g(p)

for p ∈ S \R. Note that by construction, j ≃ g.
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Figure 5. The region R in C is the region foliated in orange. The
singular foliation F of C by hyperbolas of the form xy = a for a ∈
[−1, 1] is shown in blue.

We now show that j has no fixed points. On S \ R, g has no fixed points, and j
agrees with g on this set. On R, note that the set of fixed points of F is

Fix(F ) = {(x, t) ∈ R | x = 2 or |t| = 1} .
On R \ (Fix(F ) ∪ x-axis), j moves points off of their leaf in F , and thus can have

no fixed points. On Fix(F ), g has no fixed points, so j has no fixed points. Finally,
on the x-axis, j(x, 0) = (x+ 1, 0), so we conclude that j has no fixed points.
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